3.97 \(\int \frac{x^3}{\sqrt{a x+b x^4}} \, dx\)

Optimal. Leaf size=224 \[ \frac{\sqrt{a x+b x^4}}{2 b}-\frac{a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}} \]

[Out]

Sqrt[a*x + b*x^4]/(2*b) - (a^(2/3)*x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a
^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt
[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(4*3^(1/4)*b*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3
])*b^(1/3)*x)^2]*Sqrt[a*x + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.212868, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {2024, 2011, 329, 225} \[ \frac{\sqrt{a x+b x^4}}{2 b}-\frac{a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[a*x + b*x^4],x]

[Out]

Sqrt[a*x + b*x^4]/(2*b) - (a^(2/3)*x*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a
^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt
[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(4*3^(1/4)*b*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3
])*b^(1/3)*x)^2]*Sqrt[a*x + b*x^4])

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{a x+b x^4}} \, dx &=\frac{\sqrt{a x+b x^4}}{2 b}-\frac{a \int \frac{1}{\sqrt{a x+b x^4}} \, dx}{4 b}\\ &=\frac{\sqrt{a x+b x^4}}{2 b}-\frac{\left (a \sqrt{x} \sqrt{a+b x^3}\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x^3}} \, dx}{4 b \sqrt{a x+b x^4}}\\ &=\frac{\sqrt{a x+b x^4}}{2 b}-\frac{\left (a \sqrt{x} \sqrt{a+b x^3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^6}} \, dx,x,\sqrt{x}\right )}{2 b \sqrt{a x+b x^4}}\\ &=\frac{\sqrt{a x+b x^4}}{2 b}-\frac{a^{2/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0230682, size = 64, normalized size = 0.29 \[ \frac{x \left (-a \sqrt{\frac{b x^3}{a}+1} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{b x^3}{a}\right )+a+b x^3\right )}{2 b \sqrt{x \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/Sqrt[a*x + b*x^4],x]

[Out]

(x*(a + b*x^3 - a*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)]))/(2*b*Sqrt[x*(a + b*x^3)
])

________________________________________________________________________________________

Maple [C]  time = 0.014, size = 688, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^4+a*x)^(1/2),x)

[Out]

1/2*(b*x^4+a*x)^(1/2)/b-1/2*a*(1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*((-3/2/b*(-b^2*a)^(1/3)+1/
2*I*3^(1/2)/b*(-b^2*a)^(1/3))*x/(-1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))
^(1/2)*(x-1/b*(-b^2*a)^(1/3))^2*(1/b*(-b^2*a)^(1/3)*(x+1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(-
1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2)*(1/b*(-b^2*a)^(1/3)*(x+1/2/
b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(-1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b
*(-b^2*a)^(1/3)))^(1/2)/(-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(-b^2*a)^(1/3)/(b*x*(x-1/b*(-b^
2*a)^(1/3))*(x+1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-
b^2*a)^(1/3)))^(1/2)*EllipticF(((-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*x/(-1/2/b*(-b^2*a)^(1/3
)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(x-1/b*(-b^2*a)^(1/3)))^(1/2),((3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a
)^(1/3))*(1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))/(1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^
(1/3))/(3/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{b x^{4} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/sqrt(b*x^4 + a*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{4} + a x} x^{2}}{b x^{3} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a*x)*x^2/(b*x^3 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{x \left (a + b x^{3}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**4+a*x)**(1/2),x)

[Out]

Integral(x**3/sqrt(x*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{b x^{4} + a x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^4+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x^3/sqrt(b*x^4 + a*x), x)